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ABSTRACT
In 1965, Kraichnan proposed that MHD turbulence occurs as a result of collisions between oppositely

directed Alfve� n wave packets. Recent work has generated some controversy over the nature of nonlinear
couplings between colliding Alfve� n waves. We Ðnd that the resolution to much of the confusion lies in
the existence of a new type of turbulence, intermediate turbulence, in which the cascade of energy in the
inertial range exhibits properties intermediate between those of weak and strong turbulent cascades.
Some properties of intermediate MHD turbulence are the following : (1) in common with weak turbulent
cascades, wave packets belonging to the inertial range are long-lived ; (2) however, components of the
strain tensor are so large that, similar to the situation in strong turbulence, perturbation theory is not
applicable ; (3) the breakdown of perturbation theory results from the divergence of neighboring Ðeld
lines due to wave packets whose perturbations in velocity and magnetic Ðelds are localized, but whose
perturbations in displacement are not ; (4) three-wave interactions dominate individual collisions between
wave packets, but interactions of all orders n º 3 make comparable contributions to the intermediate
turbulent energy cascade ; (5) successive collisions are correlated since wave packets are distorted as they
follow diverging Ðeld lines ; (6) in common with the weak MHD cascade, there is no parallel cascade of
energy, and the cascade to small perpendicular scales strengthens as it reaches higher wavenumbers ; (7)
for an appropriate weak excitation, there is a natural progression from a weak, through an intermediate,
to a strong cascade.
Subject headings : ISM: general È MHD È turbulence

1. INTRODUCTION

There appears to be some consensus regarding the notion
that turbulence in the ionized interstellar medium is of mag-
netohydrodynamic origin. However, even three decades
after and Ðrst, indepen-Iroshnikov (1963) Kraichnan (1965)
dently, presented their ideas on MHD turbulence (in an
incompressible, highly conducting Ñuid), there is much
debate on what this theory really is. Recent controversy has
centered on the existence, or otherwise, of certain nonlinear
interactions among Alfve� n waves. &Sridhar Goldreich

hereafter have argued that there are no resonant(1994, SG)
three-wave interactions in weak MHD turbulence. They
also asserted that the Iroshnikov-Kraichnan (IK) theory is
incorrect and constructed a theory of weak MHD turbu-
lence based on resonant four-wave interactions ; in this
theory, nonlinear interactions strengthen on small spatial
scales, resulting ultimately in a strong cascade proposed by

& Sridhar However, &Goldreich (1995). Montgomery
Matthaeus have maintained that resonant three-(1995)
wave interactions are nonempty, holding these responsible
for the anisotropic cascade seen in the numerical simula-
tions of Matthaeus, & Montgomery More-Shebalin, (1983).
over, & hereafter haveNg Bhattacharjee (1996, NB)
recently presented calculations that show that small-
amplitude wave packets do interact via three waves, so long
as the is the direction of the local, mean magnetick

z
\ 0 (zü

Ðeld) Fourier components of velocity and magnetic Ðeld
perturbations are nonzero. The present investigation is an
analysis and resolution of this controversy.

We consider magnetic turbulence in an incompressible
Ñuid, although we simply call it MHD turbulence. When
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the density and transport properties of the Ñuid are con-
stant, the equations of (incompressible) MHD read

L
t
b \ $ Â (¿ Â b) ] i+2b , (1a)

L
t
¿ \ [(¿ Æ $)¿] (b Æ $)b [ $p ] c+2¿ , (1b)

$ Æ ¿\ $ Æ b \ 0 , (1c)

where is the velocity, b \ B/(4no)1@2 is the magnetic Ðeld¿
in velocity units, and p is the ratio of total pressure to the
density. The dissipation provided by i and c is important
only on small spatial scales, so we ignore the dissipative
terms. The homogeneous state, is a¿0\ 0, B0\ B0 zü ,
stable, static solution of equations (1a)È(1c). Shear Alfve� n
waves and pseudo-Alfve� n waves are the two kinds of linear
perturbations about this equilibrium, the latter being the
incompressible limit of the slow magnetosonic wave. Both
kinds of waves have the same dispersion relation, namely,

where is called the Alfve� nu\ vA o k
z
o, vA \ B0/(4no)1@2

speed. The perturbed velocity and magnetic Ðelds are
related by where the upper/lower signs corre-d¿ \ ^db,
spond to waves traveling antiparallel/parallel to (withB0and respectively). withk
z
\ 0 k

z
[ 0, Equations (1a)È(1c),

i \ c\ 0, possess the remarkable property of allowing for
nonlinear generalizations of the linear Alfve� n waves.
Mutual cancellation of nonlinear terms permits the follow-
ing wide class of exact solutions : if at somed¿(x) \[db(x)
instant of time, t \ 0, it can be checked that y,d¿(x, z

y, for all time, irrespective of the[ vA t) \ [db(x, z[ vA t)
functional form of (see This nonlineard¿(x) Parker 1979).
solution describes a wave packet of arbitrary form traveling
nondispersively in the direction of Similarly, we can alsoB0.construct another class of nonlinear solutions, with d¿\ db,
that travels nondispersively in a direction opposite to B0.Both types of nonlinear solutions are stable, and the
dynamics is simple so long as there is no spatial overlap
(““ collisions ÏÏ) between oppositely moving wave packets.
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Let us consider a situation that is less restrictive than
perturbations about a static equilibrium (a uniform mag-
netic Ðeld). We imagine that turbulent motions on a large
scale are set up in the Ñuid by stirring it in a random but
statistically steady fashion. These create large-scale, disor-
dered velocity and magnetic Ðelds. Kinetic and magnetic
energies will cascade to smaller spatial The centralscales.3
problem of MHD turbulence is to determine the statistical
steady state amplitudes of the Ñuctuations in and b, on¿
intermediate spatial scalesÈthe so-called inertial-range
power spectrum. Mathematically speaking, this cascade
through spatial scales should emerge from the e†ect of the
nonlinear terms in equations Physically, it is(1a)È(1c).
common to speak of interactions between ““ eddies ÏÏ (see

Do interactions between eddies of dissimilarFrisch 1995).
sizes make signiÐcant contributions to the form of the
cascade? For hydrodynamic turbulence, the answer seems
to be that no, the dominant interactions are between eddies
of similar spatial scales. The reason for such a locality in
interactions between eddies is that the sweeping due to the
velocity Ðeld of a large-sized eddy (on a smaller eddy) may
be transformed away by a local Galilean transformation.
Kraichnan noted that, for MHD turbulence, such a trans-
formation has no e†ect at all on the magnetic Ðeld of the
large eddy ; the magnetic Ðeld of a large eddy acts upon
smaller eddies in much the same manner as the mean mag-
netic Ðeld does on Alfve� n wave packets. Hence MHD turbu-
lence in an incompressible Ñuid should reduce to turbulence of
interacting wave packets. We recall from the previousAlfve� n
paragraph that Ðnite-amplitude wave packets that travel in
the positive/negative z-directions do so without change in
form, so long as oppositely directed packets do not overlap.
Kraichnan realized that the cascade of energy in MHD turb-
ulence occurs as a result of collisions between oppositely
directed wave packets.Alfve� n

To derive the results of the IK theory, consider a sta-
tistically steady, isotropic excitation of amplitude v

l
> vA,

on outer scale l, of the static equilibrium mentioned earlier.
Alfve� n waves have dvD db, so that is the amplitude ofv

lexcitation of both velocity and magnetic Ðelds. The
resulting Ñuctuations may, at any time, be decomposed into
Alfve� n wave packets with scales traveling in the posi-j [ l
tive and negative z-directions. Iroshnikov and Kraichnan
assumed that the energy transfer is local and isotropic in
k-space. Collisions between oppositely directed wave
packets occur over times of order and theseu

k
~1 D (vA k)~1,

create small distortions. During one collision, each wave
packet su†ers a fractional perturbation

dvj
vj

D
dvj
dt

(vA kvj)~1 D
vj
vA

> 1 . (2)

During successive collisions, these perturbations add with
random phases. The number of collisions for the fractional
perturbations to build up to order unity is

Nj D
A vj
dvj

B2
D
AvA
vj

B2
. (3)

The energy cascade rate is where the cascade timevD vj2/tj,is given by The three-dimensionaltj DNj/(vA k) D vA/(kvj2).energy spectrum, E(k), is related to the velocity Ñuctuation

3 On scales small enough for the i+2b and the terms to be impor-c+2¿
tant, kinetic and magnetic energies will dissipate into heat.

by Using KolmogorovÏs hypothesis of the scalevj2D k3E(k).
independence of v, we obtain the following scalings for the
inertial range of the IK theory :

vj
v
l
D
Aj

l
B1@4

, E(k) D
v
l
2

l1@2k7@2 . (4)

With these scalings

Nj D
AvA

v
l

B2A l
j
B1@2

, (5)

so the cascade weakens as j decreases.

2. INTERMEDIATE TURBULENCE

2.1. A New Cascade Based on T hree-Wave Interactions
argued that the IK theory, although seemingly plaus-SG

ible, was basically incorrect. Here we discuss the reason for
the failure of this theory and propose a new cascade based
on three-wave interactions. Let us begin by listing three key
features of the IK theory :

1. Wave packets of size j live for wave periods ; largeNjvalues of correspond to weak interactions between waveNjpackets of size j. From equations and it may be(3) (4),
veriÐed that so that the cascade weakens as itNj P 1/j1@2,
progresses into the inertial range.

2. From the fractional perturbation su†eredequation (2),
by a wave packet during one collision is inD(vj/vA) > 1 ;
the IK theory, interactions between wave packets are
described by the lowest order nonlinear terms.

3. Isotropy is assumed in the derivation of the IK theory.

The derivation of this theory is essentially heuristic, roughly
as given above in equations We note this so that it is(2)È(4).
clear to the reader that there is not a more rigorous version
of the ““ theory ÏÏ that we happened not to mention.
Together, features 1 and 2 imply that the ““ elementary
interactions ÏÏ between Alfve� n waves must satisfy the three-
wave resonance conditions

k1] k2\ k3 , u1] u2\ u3 , (6)

where et al. noted that the onlyu
k
\ vA o k

z
o. Shebalin (1983)

nontrivial solutions of equations (6) require that one of
either or must be zero. This implies that waves withk1,z k2,zvalues of not present initially cannot be created duringk

zcollisions between oppositely directed wave packets. As
they point out, there is no parallel (i.e., along cascade ofk

z
)

energy. Thus the turbulence must be anisotropic, and
energy should cascade to large k

M
.

In what follows, we derive an anisotropic version of IK
theory. As before, we imagine that the system is stirred in a
statistically steady and isotropic fashion such that v

l
> vAon outer scale l. The absence of a parallel cascade implies

that wave packets belonging to the inertial range have
parallel scales l and perpendicular scales j > l. We estimate
the spectrum of the anisotropic cascade by modifying the
arguments of equations so as to keep track of parallel(2)È(4)
and perpendicular scales. In one collision between two such
oppositely directed wave packets, the fractional pertur-
bation is given by

dvj
vj

D
dvj
dt

(vA k
z
vj)~1 D

lvj
jvA

> 1 . (7)



682 GOLDREICH & SRIDHAR Vol. 485

Adding up the perturbations due to successive collisions
with random phases, the number of collisions over which
the perturbations grow to order unity is

Nj D
A vj
dvj

B2
D
AjvA

lvj

B2
. (8)

Making use of the steady state relation

vj2
tj

D
v
l
2
t
l
D v (9)

(““ KolmogorovÏs hypothesis ÏÏ), we obtain scaling relations
for the velocity Ñuctuations, as well as the three-
dimensional energy spectrum of the anisotropic, three-wave
cascade :

vj
v
l
D
Aj

l
B1@2

, E(k
z
, k

M
) D

v
l
2

k
M
3 . (10)

It follows that

NjD
AvA

v
l

B2 j
l

, (11)

so nonlinearity increases along the inertial range of the new
cascade.

The anisotropic cascade di†ers from the original IK
cascade in (1) being anisotropic, (2) having a di†erent spec-
trum, and (3) strengthening at high wavenumber. This Ðnal
di†erence has a profound consequence. It implies that the
anisotropic cascade has a limited inertial range, thereby
diminishing its applicability in astronomical contexts,
where the excitation at the outer scale is likely to be quite
strong.

It turns out that this anisotropic cascade is an example of
a new type of turbulence, which we call intermediate turbu-
lence, because it has properties intermediate between those
of weak and strong turbulence. In particular, intermediate
turbulence does not submit to perturbation theory.

2.2. T he Failure of Perturbation T heory in Intermediate
Turbulence

2.2.1. Field-L ine Geometry

To lowest order in perturbation theory, wave packets
move along Ðeld lines. Thus the breakdown of perturbation
theory may be understood physically by studying the
geometry of the divergence of a bundle of Ðeld lines. Assume
that the mean Ðeld lies along the z-axis. Consider wave
packets localized in velocity and magnetic Ðeld pertur-
bations, but not in displacement, having longitudinal scale l
and transverse scale j with j/l \ 1. Let us require that the
velocity Ñuctuation, is small enough,vj,

s 4
lvj
jvA

> 1 , (12)

so that (cf. The rms di†erential inclinationNj ? 1 eq. [8]).
of the local Ðeld across scale j is It is correlatedhjD vj/vA.
over distances l and j parallel and orthogonal to z.

Let us focus on a pair of neighboring Ðeld lines separated
by j at z\ 0. The expectation value of the separation
between these Ðeld lines, *, varies such that

*2D j2] hj2 l o z o (13)

for o z o? l. The distance along z over which o* o increases by
a factor of order unity from its initial value of j at z\ 0 is

L
*

D
AjvA

lvj

B2
l D

l
s2 ; (14)

is a function of j. The signiÐcance of in intermediateL
*

L
*turbulence follows because turbulence involves the transfer

of energy across scales. If s > 1, single interactions between
wave packets result in small perturbations. Cascading of
energy requires of order

Nj D
1
s2 D

L
*
l

? 1 (15)

such interactions.

2.2.2. Nonlinear Interactions in Intermediate Turbulence

We have deduced the form of the spectrum of interme-
diate MHD turbulence from scaling arguments based on
three-wave couplings. Moreover, these interactions are
weak in the sense that This might suggest thatNj? 1.
three-wave interactions dominate those of higher order and
that a rigorous derivation of the steady state cascade might
result from truncation at this order. Unfortunately, this is
incorrect ; interactions of all orders have similar strengths.

Consider the distortion su†ered during a single collision
between oppositely directly wave packets of similar strength
with perpendicular and parallel dimensions and l. Wej [ l
assume that Contributions from interactionslvj> jvA.
involving n waves may be written as

dnvj
vj

D
A lvj
jvA

Bn~2
. (16)

Clearly, three-wave interactions dominate those of higher
order for individual collisions.

Next we consider the cumulative distortion due to
n-wave interactions as a wave packet travels a distance l >

We can picture the distortion as arising from thez> L
*
.

shearing of the packet as it follows the di†erential wander-
ing of neighboring Ðeld The net displacement of indi-lines.4
vidual Ðeld lines over distance z deÐnes a vector Ðeld whose
shear tensor transforms the packetÏs Forshape.5 l > z> L

*this transformation is close to the identity, so it may be
expanded in a Taylor series. The expansion parameter is

the dimensionless measure of fractional spreading(z/L
*
)1@2,

over distance z of a bundle of Ðeld lines whose cross-
sectional radius at z\ 0 is j. Terms of order n [ 2 in vjcorrespond to n-wave These terms have theinteractions.6
form

dnvj
vj

D
A lvj
jvA

Bn~2Az
l
B(n~2)@2

D
A z
L
*

B(n~2)@2
. (17)

A notable feature of equation (17) is that contributions from
higher order (n º 4) interactions carry extra factors of
(z/l)1@2. By ““ extra factors,ÏÏ we mean those beyond the single
factor (z/l)1@2 expected to arise from the addition of a
sequence of independent interactions between pairs of wave

4 A uniform displacement of a wave packet does not contribute to the
energy cascade.

5 This transformation is subject to the constraints of Ñuid incompress-
ibility and magnetic Ñux freezing.

6 Since wave packets follow Ðeld lines only to lowest order, non-
kinematic terms appear at orders n º 4. Those of n \ 4 are given in ° 3.3.2.
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packets. These factors reveal an interdependence among
collisions associated with the nonlocalized Ðeld-line dis-
placements of the wave packets.7

Intermediate turbulence is nonperturbative because dis-
tortions of all orders become large as This is asz] L

*
.

expected, because the cascade time across scale j is tj D
It implies that n-wave interactions of all orders n º 3L

*
/vA.

make comparable contributions to the energy cascade.

2.2.3. L agrangian Perturbation T heory

A Ñuid element whose Lagrangian coordinate is a has
Eulerian location x, at time t, given by

x \ a ] n(a, t) , (18)

where n(a, t) is the displacement Ðeld. Velocity and magnetic
Ðeld perturbations at the Eulerian location are deÐned in
terms of the displacement vector by

¿(x, t)\ Ln

Lt
(a, t) , b(x, t)\ vA

Ln

La
A

(a, t) . (19)

employed a formulation of the MHD action due toSG
and developed a Lagrangian perturbationNewcomb (1962)

theory for weak MHD turbulence. The Lagrangian is a
functional of the strain tensor Ðeld, in other words, the
gradient of the displacement vector Ðeld. Expansion of the
Lagrangian density in powers of the strain tensor yields
terms of second order, n \ 2, and then fourth and higher
orders, n º 4. The absence of third-order terms signiÐes that
wave packets follow Ðeld lines to lowest nonlinear order.
The absence of Lagrangian perturbations based on three-
wave interactions implies that Eulerian perturbations due
to three-wave interactions are purely kinematic. Kinematic
contributions to Eulerian perturbations are also present at
each higher order, n º 4. But these are augmented by
dynamic perturbations arising from order n º 4 terms in
the expansion of the Lagrangian.

As before, we consider small-amplitude, (lvj/jv
l
) > 1,

wave packets localized in and b but not in n. Roughly¿
speaking, convergence of the perturbative expansion
requires the components of the strain tensor to be smaller
than An ensemble of independent wave packets gen-unity.8
erates an energy spectrum that is Ñat for Since u\k

z
l[ 1.

the power spectrum of the displacement vector ÐeldvA o k
z
o,

varies as for The same behavior characterizesk
z
~2 k

z
l > 1.

the power spectra of some of the components of the strain
tensor. It implies that these components diverge. The diver-
gence is the mathematical expression of the spreading of
Ðeld-line bundles described in In this light, the failure° 2.2.1.
of perturbation theory is seen to be generic, and not just a
consequence of an unfortunate choice of perturbation vari-
able.

Next we investigate the e†ect of cutting o† the energy
spectrum below where The most stronglyk

z
L D 1, L Z l.

divergent components of mij have power spectra given by

o m8 ij(k) o2D
Avj
vA

B2 l
k
z
2 . (20)

7 These extra factors of (z/l)1@2 are absent in the corresponding formula
for wave packets that are localized in displacement.

8 From this point on it is best to proceed in Fourier space, since the
breakdown of perturbation theory is closely related to the behavior of the
energy spectrum (i.e., velocity, or magnetic Ðeld power spectra) at small k

z
.

Multiplying equation (20) by and integrating fromk
M
2 k

z
D

L~1 to we obtain the average value of o mij o2 due tok
z
D l~1,

power in this wavenumber interval,

o mij o2D j~2
P
L~1

l~1
dk

z
o m8 ij(k) o2D

A lvj
jvA

B2 L
l

. (21)

Thus

o mij o2D L /L
*

, (22)

where is deÐned in Once again we see theL
*

equation (14).
crucial role played by the perturbative expansion con-L

*
;

verges if the energy spectrum is cut o† below k
z
L
*

D 1.
The absence of third-order terms in the expansion of the

Lagrangian signiÐes the absence of resonant three-wave
interactions in perturbative MHD turbulence. Weak MHD
turbulence based on four-wave interactions is discussed in
° 3.2.

3. ON WEAK AND INTERMEDIATE TURBULENCE

3.1. Types of Turbulence
We have discussed, at some length, the intermediate

cascade. It is time to state in a precise manner the properties
that characterize the three kinds of turbulence. Let us begin
with a deÐnition. Weak turbulence is characterized by the
following properties :9

1. Nonlinear interactions among an ensemble of waves
that are weak, in the sense that the fractional change in
wave amplitude during each wave period is small.

2. The existence of a convergent perturbative expansion
for the nonlinear interactions. Typically the small param-
eter is the fractional change in wave amplitude during a
wave period.

When these two conditions are satisÐed, a formal theory of
resonant wave interactions may be derived. For the theory
to be nonempty, either the three-wave or four-wave reso-
nance relations must possess nontrivial solutions. Power
spectra of cascades arise as stationary solutions of the
kinetic equation describing modal energy transfer.

SpeciÐcally, for MHD turbulence, we Ðnd the following :

a) The turbulent cascade based on four-wave inter-
actions, derived in is the unique weak cascade thatSG,
satisÐes both conditions 1 and 2 above. Moreover, this
cascade is realizable ; it could in principle be set up experi-
mentally. While three-wave interactions do not vanish, they
are nonresonant and do not transfer energy among di†erent
waves.

b) The critically balanced cascade described in Goldreich
& Sridhar is an example of strong turbulence. It vio-(1995)
lates both conditions 1 and 2. The interaction time is of the
order of the wave period. Interactions of all orders have
comparable strengths ; there is no valid perturbative expan-
sion.

c) There is a third type of MHD turbulence that satisÐes
condition 1 but not condition 2. It is an example of what we
have called intermediate turbulence. This turbulence exhibits
weak interactions, but strains in the Ñuid are so strong that
perturbation theory diverges. The three-wave interactions
are included, but not dominant ; it turns out that inter-

9 For a standard discussion of these points, see the introduction to
LÏvov, & FalkovichZakharov, (1992).
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actions of all orders contribute equally weakly. The inertial-
range spectrum of intermediate MHD turbulence is given,
for the Ðrst time, in of this paper.equation (10)

3.2. Weak TurbulenceAlfve� nic
Having discussed intermediate turbulence in some detail,

we provide a brief outline of the theory of weak MHD
turbulence that constructed using resonant four-waveSG
interactions. By studying the resonant terms of the fourth-
order Lagrangian, derived a formal kinetic equation forSG
the evolution of energies (more precisely, ““ wave action ÏÏ) in
di†erent modes and proved that a cascade of energy indeed
emerges as a stationary solution. The elementary inter-
actions involve scattering of two waves that respect the
following conservation laws :

k1 ] k2\ k3] k4 , u1] u2\ u3 ] u4 . (23)

Using and the z-component of the equationu
k
\ vA o k

z
o

involving the kÏs, proved that andSG k1,z\ k3,z [ 0
Of course, the symmetry of equation (23)k2,z\ k4,z\ 0.

allows us to Ñip the signs of all the or permute indices 3k
z
Ïs,

and 4 ; the important point is that the scattering process
described by equation (23) leaves the unal-k

z
-components

tered. This implies that waves with values of not presentk
zin the external stirring cannot be created by resonant four-

wave interactions.
In addition to developing a formal theory, also pro-SG

vided a heuristic derivation of the weak four-wave cascade
for shear Alfve� n waves. Here we note the main properties of
the weak cascade of shear Alfve� n waves :

1. As discussed above, there is no transfer of energy to
small spatial scales in the z-direction ; the energy cascade in
k-space occurs only along (i.e., in directions perpendicu-k

Mlar to the mean magnetic Ðeld).
2. The three-dimensional energy spectrum, E, is deÐned

by

; vj2\
P

E(k
z
, k

M
)
d3k
8n3 , (24)

where the sum is over wave packets of various scales. Weak
turbulence relies on a convergent perturbation theory. As
discussed in this requires that the spectrum, E, be cut° 2.2.3,
o† for Moreover, weak four-wave interactionso k

z
L
*

o\ 1.
do not change which implies that E may have a quitek

z
,

arbitrary dependence on This simply depends on theo k
z
o.

nature of the excitation and is not of much interest here. If
is a perpendicular length scale belonging to thej D k

M
~1

inertial range, the scalings derived by for the weak,SG
four-wave cascade are

vj
v
l
D
Aj

l
B2@3

, E(k
z
, k

M
) D

v
l
2

l1@3k
M
10@3 . (25)

3. The number of collisions needed for the packet to lose
memory of its initial state is

Nj D
AjvA

lvj

B4
D
AvA

v
l

B4Aj
l
B4@3

. (26)

Note that, in common with the spectrum of intermediate
turbulence (given in decreases as the cascadeeq. [10]), Njproceeds to smaller j.

4. In their treatment of weak turbulence, unwittinglySG
made the assumption that E was cut o† at small Whileo k

z
o.

the weak turbulence of is realizable (see below), thisSG ° 4
feature makes it less applicable than intermediate turbu-
lence.

3.3. A Controversy and Its Resolution
have proved, analytically, that three-wave inter-NB

actions between small-amplitude wave packets are nonzero
if the Fourier components are nonzero. On the otherk

z
\ 0

hand, have argued, using a Lagrangian perturbationSG
theory, that three-wave interactions are absent in weak
MHD turbulence. In we claimed that the interactions° 2,
found by lead to intermediate, rather than weak, turbu-NB
lence. Here we bolster that claim by an explicit evaluation
of three-wave and four-wave interactions in Lagrangian
coordinates.

The simplest derivation employs the Lagrangian dis-
placement vector Ðeld as the basic variable (cf. eqs. and[18]

Incompressibility implies that the transformation[19]).
between Lagrangian and Eulerian coordinates have unit
Jacobian. Thus

J \ 1 ] $ Æ n [ 12$n :$n ] 12($ Æ n)2] 13mijmjkmki

[ 12($ Æ n)mijmji] 16($ Æ n)3 , (27)

where $ refers to derivatives with respect to Lagrangian
coordinates and

$n :$n 4 mijmji . (28)

The displacement vector n is split into transverse and
longitudinal components g and f, respectively, such that

n \ g ] f , (29)

with

$ Æ g \ 0 . (30)

The components of g are the two independent variables ; f is
obtained from Thusequation (27).

$ Æ f2\ 12$g1 :$g1 , (31)

$ Æ f3\ $g1 :$g2] $g1 :$f2[ 13g1ijg1jkg1ki . (32)

The Ðrst term on the right-hand side of equation (32) is
included for completeness, since g2 \ 0.10

Following the development in ° 3 of we write theSG,
Lagrangian as

L\ o
2
P

d3a
A K Ln

Lt
K2[ vA2

K Ln

La
A

K2B
. (33)

However, we present our calculations in real space, rather
than in Fourier space ; the results are identical, but the real-
space version turns out to be useful later. Solving equation

yields(31)

f2 \ [$
P d3a@

8n
$g1 :$g1
o a [ a@ o

. (34)

We now write

L\L2 ]L4 (35)

10 See and the footnote that follows it.eq. (42)
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(the third-order terms vanish), with

L2\ o
2
P

d3a
A K Lg1

Lt
K2[ vA2

K Lg1
La

A

K2B
, (36)

L4\ o
2
P

d3a
A K Lf2

Lt
K2[ vA2

K Lf2
La

A

K2B
. (37)

Variation of the action

S4
P

dt[L]
P

d3aP($ Æ g)] (38)

with respect to g leads to the (Euler-Lagrange) equation of
motion.11

3.3.1. T hree-Wave Interactions in L agrangian Coordinates

In this subsection, we recover the results of the three-
wave interactions calculated by Moreover, we demon-NB.
strate that they are purely kinematic in Lagrangian
coordinates.

To lowest order, the contribution of may be ignored.L4Using for in the variation of Sequation (36) L2 (eq. [38])
results in the following simple, linear equation :12

A L2
Lt2[ vA2

L2
La

A
2
B
g1 \ 0 , (39)

whose general solution is a superposition of wave packets
traveling in the positive and negative z-directions :

g1\ g1`(a
M
, a

A
[ vA t) ] g1~(a

M
, a

A
] vA t) . (40)

calculated, in Eulerian coordinates, the lowest orderNB
perturbation due to a collision between oppositely directed
wave packets. It is a trivial matter to obtain this quantity by
using Lagrangian perturbation theory. To do so, we trans-
form the right-hand side of the expression for given in¿,

into Eulerian coordinates. To Ðrst order,equation (19),

¿1(x, t)\ Lg1
Lt

(x, t) (41)

is the velocity Ðeld of unperturbed wave packets, and isg1the corresponding displacement Ðeld. To second order,

¿2\ [(g1 Æ $
x
)¿1] Lf2

Lt
, (42)

where the subscript x refers to Eulerian coordinates.13
When we substitute in the right-hand side ofequation (40)
equation (42), we obtain three di†erent types of terms ; those
that contain two powers of or have nothing to dog1` g1~with perturbations induced by collisions. Only the mixed
terms describe distortions su†ered by a wave packet during
a collision with an oppositely directed wave packet. If

*g1B \ <[g1B(x
M
, ]O) [ g1B(x

M
, [O)] (43)

is the net displacement of Ðeld lines due to the (^) wave
packets, then the asymptotic distortion due to a collision is

*¿2B\ [(*g1Y Æ $
x
)¿1B[ $

x

P d3x@
4n

$
x
(*g1Y) :$

x
¿1B

o x [ x@ o
. (44)

11 P is a Lagrange multiplier needed to ensure that $ Æ g \ 0.
12 We assign Ðrst order to g of unperturbed wave trains.
13 The absence of is due to the vanishing ofLg2/Lt L3.

The above expression is equivalent to equations (15) and
(16) of The wave packet distortions expressed by equa-NB.
tion (44) are kinematic, as described in Displace-° 2.2.3.
ments resulting from any sequence of collisions are
obtained by summing individual Note that bothvalues.14
terms on the right-hand side of equation (44) depend on

the net displacement of Ðeld lines, which is related to*g1B,
the Fourier amplitude of withg1B k

z
\ 0.

3.3.2. Four-Wave Interactions in L agrangian Coordinates

Our principal aim in this subsection is to demonstrate
that four-wave interactions obey the distance scaling pro-
posed in Our secondary goals are to obtainequation (17).
the spectrum of weak Alfve� nic turbulence from a
conÐguration-space calculation and to recover the
frequency-changing terms discovered by in fullNB,
MHD.15

We have shown that the three-wave interactions of NB
arise from kinematic perturbations in Eulerian coordinates.
Dynamic perturbations require the interaction of at least
four waves and are associated with perturbations in
Lagrangian coordinates. We already possess the machinery
necessary to derive these. When is included in the actionL4of the variation with respect to leads toequation (38), g1Euler-Lagrange equations, which may be thought of as
adding third-order terms to the right-hand side of equation
(39) :

A L2
Lt2[ vA2

L2
La

A
2
B
g3\ (g1 Æ $)

A L2
Lt2[ vA2

L2
La

A
2
B
f2[ $P3 3

o
,

(45)

where is determined by requiring thatP3 3 $ Æ g3\ 0.
For simplicity, we evaluate the deformation su†ered by a

wave packet traveling in the positive It provesa
A
-direction.

convenient to transform to coordinates

a \ a
A

[ vA t , q\ t . (46)

As given in the unperturbed wave packets inequation (40),
these coordinates have the forms

g1`\ g1`(a
M
, a) , g1~ \ g1~(a

M
, a ] 2vA q) . (47)

The equation of motion for in the new variables, q andg3a), readsA 4 (a
M
,

L
Lq
A L
Lq

[ 2vA
L
La
B
g3\ [(g1 Æ $)

L
Lq
A L
Lq

[ 2vA
L
La
B

] $
P d3A@

4n
$g1~ :$g1`
o A [ A@ o

[$P3 3
o

, (48)

where the primes indicate dummy integration variables and
the choice of superscripts applied to on the right-handg1side of the equation is dictated by the requirement that the
di†erential operators acting on the integral do not kill it ;
one and one must appear in the integral over d3A@g1` g1~

missed these distortions because they studied wave packet inter-14 SG
actions in which the wave packets were localized in g ; for these *g1B \ 0,
and third-order couplings vanish even in Eulerian coordinates. This is
consistent with the point made in footnote 5 of (p. 616), that resonantSG
coupling coefficients are independent of the variables used. Of course, for
this to be true, one must be in a regime in which perturbation theory is
valid, which obtains only for wave packets localized in g.

discovery was made using reduced MHD.15 NBÏs
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because the derivatives L/Lq and annihilate(L/Lq[ 2vAL/La)
andg1` g1~, respectively.16

Further expansion of the right-hand side of equation (48),
obtained by writing results in two terms.g1\ g1` ] g1~,
Rather than carry the cumbersome pressure term through
the remainder of our calculation, we discard it and replace

on the left-hand side of the equation of motion by tog3 g8 3,remind us that its longitudinal part must be subtracted o†
at a later stage :

L
Lq
A L
Lq

[ 2vA
L
La
B
g8 3\ [

A L
Lq

[ 2vA
L
La
B
(g1~ Æ $)

]
L
Lq

$
P d3A@

4n
$g1~ :$g1`
o A [ A@ o

[ L
Lq

(g1` Æ $)

]
A L
Lq

[ 2vA
L
La
B
$
P d3A@

4n
$g1~ :$g1`
o A [ A@ o

. (49)

Although we have used coordinates, (a,q), moving with the
positive wave packet, we emphasize that the equation of
motion (eq. [49]) remains symmetric in and i.e., theg8 3` g8 3~ ,
action of the Ðrst term on a (^) wave packet is identical to
that of the second term on a (<) wave packet. To determine
the perturbations su†ered by a (]) wave packet, we set

on the left-hand side.g8 3\ g8 3`If the Ðrst term were the only perturbing interaction, we
could peel o† the operator from both(L/Lq [ 2vA L/La)
sides. Integration over time would yield

*g8 3a` \ [
P
~=

`=
dq(g1~ Æ $)$

P d3A@
4n

$(Lg1~/Lq) :$g1`
o A [ A@ o

, (50)

which describes the four-wave interactions (cf. thateq. [23])
form the basis of the weak turbulence theory of SG.

The third-order Eulerian velocity perturbation consists of
both kinematic and dynamic terms. An explicit expression
follows from equation (19) :

¿3(x, t) \ 1
2

g1g1 :$
x
$
x

Lg1
Lt

] (g1 Æ $
x
)(g1 Æ $

x
)
Lg1
Lt

[ (g1 Æ $
x
)
Lf2
Lt

[ (f2 Æ $
x
)
Lg1
Lt

] Lf3
Lt

] Lg3
Lt

. (51)

The Ðnal term is the sole dynamic entry. Each of the other
terms is constructed from without use of the equation ofg1motion. In particular, is obtained fromf3 equation (32).

Let us estimate the fractional distortion su†ered by a
positive wave packet after traveling a distance z? l. Among
the plethora of kinematic terms, consider only

*¿3`\ 1
2

*(g1~g1~) :$
x
$
x

Lg1`
Lt

. (52)

To order of magnitude, both this term and the dynamic
term contribute

d4vj`
vj`

D
Alvj~
jvA

B2 z
l

, (53)

16 Proof of the second of these relations requires an integration by parts
to transfer L/La acting on 1/ o A [ A@ o to L/La@ acting on $g1 :$g1.

the same order of magnitude as the fractional Eulerian dis-
tortion given by equation (17).17

To make contact with the weak four-wave cascade, we
suppose that the velocity spectrum of the negatively
directed waves is cut o† at Then the dis-k

z
D L~1> l~1.18

tortions build up coherently over distance L . Over longer
distances, z? L , they add with random phases, implying

d4vj
vj

D
A lvj
jvA

B2 L
l
Az
L
B1@2

. (54)

Cascade occurs when thusd4vj/vj D 1 ;

Nj D
AjvA

lvj

B4 l
L

. (55)

But for the extra factor of l/L , this is identical to equation
whereupon, provided that the spectrum of the(26), Nj ? 1,

weak four-wave cascade, given in follows.equation (25),
Next we return to investigate the second term in equation

Imagine that the Ðrst term was switched o†. Then(49).
remove a L/Lq from both sides, leaving the left-hand side in
the form We expect the action of L/Lq(L/Lq [ 2vA L/La)g8 3b` .
to be subdominant ; therefore

Lg8 3b`
La

^ [(g1` Æ $)$
P d3A@

4n
$g1~ :$(Lg1`/La@)

o A [ A@ o
, (56)

implying that the net change in the (]) wave packet is

*
ALg8 3b`

La
B

^ [(g1` Æ $)$
P d2a

M
@

4n
$g1~ o~== :

P
da@

$(Lg1`/La)
o A [ A@ o

.

(57)

We have written equation (57) in a form that makes
explicit the dependence of the perturbation on only the net
displacement induced by the ([) wave packet. In other
words, the perturbation induced in a wave packet is pro-
portional to the amplitudes of the Fourier com-k

z
\ 0

ponents of oppositely directed wave packets : these terms
were Ðrst discovered by in the limit of reduced MHD.NB
We may describe the interactions by the following kind of
resonant four-wave process :

k1 \ k2] k3] k4 , u1\ u2] u3 ] u4 , (58)

wherein one wave may be induced (by an oppositely
directed wave) to split into two, or two waves could equally
well be induced to combine into one. Manipulating the
resonance relations leads to positive (say),k1,z, k2,z, k3,zwhile approaches zero from below. Thusk4,z u1\ u2] u3allows for changes in the frequencies of wave packets, and
harmonics, as well as subharmonics, are generated by this
process. These four-wave interactions require the energy
spectrum of the negatively directed packets to be Ñat near

thus they do not arise in weak turbulence. Are theyk
z
\ 0 ;

of importance to intermediate turbulence? To this end, let
us make an order-of-magnitude estimate of the pertur-

17 We draw particular attention to the linear dependence on z/l.
18 For simplicity we consider the symmetric situation and drop the ^

signs in the superscripts.
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bation. From the perturbation su†ered by theequation (57),
(]) wave packet upon traveling a distance iszD vA t

dgj`D k
M
2 gj` gj`*gj~ , (59)

where 0). Using*gj~4 g~(j
M
, z) [ g~(j

M
, gjD l(vj/vA),

*gj~ D
vj~
vA

(lz)1@2 . (60)

Thus the fractional distortion of the positively directed
wave packet is

dvj`
vj`

D
dgj`
gj`

D
lvj`
jvA

lvj~
jvA

Az
l
B1@2

, (61)

which is smaller than the corresponding quantity in inter-
mediate turbulence (set n \ 4 in and compare witheq. [17],
the above eq. [61]) by a factor (z/l)1@2 ; thus, harmonic gen-
eration is unimportant for intermediate turbulence.19

4. EVOLUTION OF A WEAK PERTURBATION

Now we address the issue of the physical relevance of the
cascade proposed by for weak turbulence. We go on toSG
show that weak turbulence, intermediate turbulence, and
strong turbulence can be consecutive stages of a single turb-
ulent cascade.

Imagine exciting shear Alfve� n waves (isotropically on
scale l/L > 1 with amplitude in a cubical boxv

l
/vA > 1)

Ðlled with an electrically conducting Ñuid that is threaded
by an unperturbed magnetic Ðeld aligned parallel to the
z-axis. Let the box have side length L and assume that its
walls are made of an excellent electrical conductor. Then
Ðeld-line displacements associated with turbulent motions
must vanish at the walls. This boundary condition provides
the cuto† of the energy spectrum for k

z
L \ 1.

Suppose that

A v
l

vA

B2
>

l
L

. (62)

Then Ðeld lines initially separated by scale l maintain this
approximate spacing. This ensures that there are no reso-
nant three-wave interactions in the upper part of the
cascade and that resonant four-wave interactions dominate.
From we haveequation (25),

vj
vA

D
v
l

vA

Aj
l
B2@3

. (63)

The weak cascade grades into the intermediate cascade
when

Avj
vA

B2
D

j2
lL

, (64)

which occurs for

j1
l

D
A v

l
vA

B3AL
l
B3@2

. (65)

19 However, it might play an important role in strong turbulence.

For the intermediate cascade,

vj
vA

D
A v

l
vA

B3@2AL
l
B1@4Aj

l
B1@2

. (66)

The intermediate cascade steepens into the strong cascade
when

vj
vA

D
j
l

, (67)

which takes place at

j2
l

D
A v

l
vA

B3AL
l
B1@2

. (68)

Within the inertial range of the strong cascade,

vj
vA

D
A v

l
vA

B2AL
l
B1@3Aj

l
B1@3

. (69)

The complete three-dimensional inertial-range spectrum
is given by

E(k
z
, k

M
) D l3v22

(k
M

l)~10@3 for
Gl~1\ k

M
\ j1~1 ,

L~1\ k
z
\ l~1 ,

]g
A v

l
vA

BAL
l
B1@2

(k
M

l)~3 for
Gj1~1\ k

M
\ j2~1 ,

L~1\ k
z
\ l1 ,

A v
l

vA

B2AL
l
B2@3

(k
M

l)~8@3 for
Gk

M
[ j2~1 ,

L~1\ k
z
\ (k

M
j2)2@3l~1 ,

(70)

There are a couple of points worth noting in connection
with the above combined cascade. The intermediate cascade
is conÐned to where the ratioj2[ j [ j1,

R4
j2
j1

D
l
L

(71)

is independent of As R] 1 from below, the inertialv
l
/vA.

range of this cascade shrinks to zero, exposing a direct tran-
sition between the weak and strong cascades. This is the
transition discussed in and & SridharSG Goldreich (1995).

5. DISCUSSION

In a recent paper, & Bhattacharjee claimedNg (1996)
that (1) in weak MHD turbulence, three-wave interactions
between oppositely directed wave packets are nonzero if the

components are nonzero and (2) three-wave inter-k
z
\ 0

actions dominate over four-wave interactions. We hope to
have persuaded the reader that (1) is correct so long as
““ weak ÏÏ is altered to ““ intermediate ÏÏ and that (2) is true
only for individual collisions between small-amplitude wave
packets. However, deserve full credit for demonstratingNB
the importance of three-wave interactions, as well as dis-
covering the frequency-changing terms in four-wave inter-
actions. Both are a consequence of a nonzero net
displacement of Ðeld lines, due to the perturbations of wave
packets that have localized velocity and magnetic Ðeld per-
turbations.

Intermediate turbulence shares with weak turbulence the
property that wave packets are long-lived : interaction times
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are much longer than the wave periods. The distinguishing
feature is that perturbation theory is not applicable to inter-
mediate turbulence ; this should be clear from our demons-
tration that interactions of all orders have the same
strength. Of course, during individual collisions, three-wave
interactions dominate over all higher order interactions.
However, as described in for wave packets localized° 2.2.2,
in velocity and magnetic Ðelds, but not in the net displace-
ment of Ðeld lines, subsequent collisions are correlated ; this
makes all n-wave interactions contribute equally to inter-
mediate turbulence. If Iroshnikov and Kraichnan had per-
formed their heuristic estimates taking account of the fact
that there is no parallel cascade for long-lived wave packets,
they would have found the spectrum of the intermediate
cascade. This is one case in which the assumption of isot-
ropy (usually innocuous) is misleading ; the anisotropic
intermediate cascade strengthens on small spatial scales,
whereas the isotropic IK cascade weakens.

We have devoted attention almost exclusively to shear
Alfve� n (““ sA ÏÏ for brevity) waves, ignoring the dynamics of
pseudo-Alfve� n (““ pA ÏÏ) A generic excitation may bewaves.20
expected to put power equally into both kinds of waves.
Should not we then study the interactions of the pA waves
among themselves, as well as with sA waves? Will this
modify the cascades we derived for the sA waves? It turns
out that the pA waves are slaved to the sA waves. The
reason is as follows : Suppose that we were following the
distortions su†ered by a positively directed wave packet due
to other, negatively directed ones. The nonlinear inter-
actions are given, to order of magnitude, by some power of

Because the cascades in MHD(¿~ Æ $)¿`D (k Æ ¿~)¿`.
turbulence are anisotropic, we expect that in thek

M
? k

zinertial range. We note that the polarization of an sA wave

20 The only exception is the proof that there are no three-wave coup-
lings for either type of Alfve� n wave, in the Lagrangian perturbation theory
of SG.

is essentially along and that of a pA wave is alongzü Â k
M
, zü ,

and hence estimate that the ““ operator ÏÏ k Æ ¿D (k
M

v
s
A)

Thus the pA waves are slaved to] (k
z
v
p
A) D (k

M
v
s
A).21

the sA waves ; in a later paper, we will derive kinetic equa-
tions and demonstrate that the spectrum of the pA waves is
identical to that of the sA waves for weak, intermediate, and
strong turbulence.

How might an energy spectrum with a cuto† below
arise? Two related possibilities come to mind. Thek

z
L D 1

Ðrst involves a thought experiment that could be realized
computationally ; we described this in A more natural° 4.
setting might be the atmosphere of a massive star that pos-
sesses a strong external dipole The energy spectrumÐeld.22
of waves in the stellar magnetosphere would be cut o† on
scales longer than the length of the Ñux tubes that link the
northern and southern magnetic hemispheres. The cuto† at
small necessary for weak turbulence makes it, in general,k

zless applicable than intermediate turbulence. However, the
limited inertial ranges of both weak and intermediate cas-
cades suggests that neither is likely to Ðnd much application
in nature. The critically balanced cascade, proposed by

& Sridhar for strong MHD turbulence,Goldreich (1995)
remains the most likely candidate for interstellar turbu-
lence.
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21 If the amplitude of the pA wave is very much larger than the sA wave,
we could imagine that but this is an unlikely situation.(k

M
v
s
A) \ (k

z
v
p
A),

However, a detailed analysis rules out this possibility in cases in which
both waves have comparable amplitude on the outer scale.

22 Stars with masses in excess of a few solar masses have radiative
atmospheres with little mass motion.
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